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Health management (HM) technologies have been employed for safety critical system for 

decades, but a coherent systematic process to integrate HM into the system design is not yet 

clear. Consequently, in most cases, health management resorts to be an after-thought or 

‘band-aid’ solution. Moreover, limited guidance exists for carrying out systems engineering 

(SE) on the subject of writing requirements for designs with integrated vehicle health 

management (IVHM). It is well accepted that requirements are key to developing a 

successful IVHM system right from the concept stage to development, verification, 

utilization, and support. However, writing requirements for systems with IVHM capability 

have unique challenges that require the designers to look beyond their own domains and 

consider the constraints and specifications of other interlinked systems. In this paper we 

look at various stages in the SE process and identify activities specific to IVHM design and 

development. More importantly, several relevant questions are posed that system engineers 

must address at various design and development stages. Addressing these questions should 

provide some guidance to systems engineers towards writing IVHM related requirements to 

ensure that appropriate IVHM functions are built into the system design. 

I. Introduction 

he term Integrated Vehicle Health Management (IVHM) describes a set of health management (HM) 

capabilities integrated into a system’s design that enable sustainable and safe operation of components and 

subsystems within vehicle platforms. For some systems such as deep space robotic spacecraft systems health 

management, the focus is on fault management (FM)
1
 with safety and reliability goals during operation. For others, 

such as aircraft, terrestrial vehicles, or long duration serviceable space platforms, the emphasis is on improving 

uptime and maintaining safety during system life cycle. For those systems, HM includes accommodation of both 

faults and effects of normal wear due to usage and ageing. The discussion in this paper addresses both safety and 

maintainability objectives.  Despite significant advances in HM technologies and their application in flight-critical 

operations over the last few decades, commercial success stories of HM are relatively few
2
. System engineers and 

designers have to use knowledge gained from experience or adapted from other processes rather than through an 

established system engineering (SE) process. The engineering  ‘discipline’ of health management is not well 

recognized in most organizations and hardly practiced  consistently within the same organization
1, 2

. In many cases 

the top level requirements for IVHM are themselves so vague that systems engineers struggle to define the scope 

and functions of HM. In the past, it was, therefore, not uncommon that design for HM suffered from several 

shortcomings
3
. These included, for example, that designers did not identify the right stakeholders; customer needs 

were not properly articulated; the link of top level requirements to the design rationale including a cost-benefit-

analysis were missing; the flow-down to lower level requirements was not well established; and, the links to other 
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SE processes (such as verification and validation (V&V), architecture design, program milestones, and so on) were 

not clearly defined early on in the design-phase. It is not surprising that most, if not all, of the recently fielded 

examples of HM fall into the category of retrofitting piecewise solutions implemented on need basis within a 

multitude of constraints
4
. These usually result in very high costs that are far from optimal when compared to a 

system design with built-in health management functions. 

As HM technologies continue to mature there has been a rise in the number of efforts where aerospace 

professionals have come together to carve out standardized processes or systematic guidelines for IVHM design 

within system development. Ranging from workshops and conference meetings to reference texts
2, 4, 5

 and standards 

documents, a lot of information about IVHM theory and practice is being formalized. For instance, SAE’s HM-1 

technical committee has the charter to develop standards documents on Aerospace IVHM. These documents 

endeavor to distill the practical experience from industry such that they give engineers and program managers 

guidance on the elements of IVHM that they need to consider for designing and operating a system. Similarly, there 

has been a concerted effort within NASA to organize fault management practice by way of fault management 

workshops
4, 6

 and development of a fault management handbook
7
. It is well understood that coming up with good 

requirements for IVHM early on during systems design phase would be the most effective towards its 

implementation. One of the proposed SAE documents is an aerospace recommended practice (ARP6883) that is 

being developed.  This aerospace recommended practice will describe all the steps of requirements generation and 

management as it applies to IVHM systems, and demonstrate these with “real-world” examples
8
. Earlier works have 

explored the requirement flowdown for IVHM from high level user objectives
9, 10

 that will allow upfront assessment 

of IVHM complexity commensurate with mission objectives and scope
11

. Furthermore, it is also realized that it is 

not only important to establish the product requirements but also process requirements to actually realize a truly 

integrated HM system as opposed to a ‘band-aid’ HM system
7, 12

. The project management structure should regard 

IVHM engineering as an activity on its own with clear roles and responsibilities, formal documentation for design, 

implementation, and reviews of IVHM, upfront resource allocation, and adequate planning for IVHM testing and 

validation
11

. 

Systems with IVHM capability have unique challenges that require the designer to look beyond their own 

domain and consider the constraints and specifications of other interlinked systems. There is a strong need to clearly 

identify and lay out a process that gives engineers and program managers crisp guidance on all the elements of 

IVHM that they need to consider before designing a system. This paper presents a view on how IVHM design and 

development should be included in the overall system design. Details specific to IVHM design and development are 

provided for each of these system level steps. A brief overview of SE processes, followed in various government 

and commercial organizations, is presented in Section II by mapping similar steps onto a common process and then 

describing IVHM specific activities. Section III then enumerates specific activities during the concept and 

exploratory stages, which define the goals for IVHM and lay the foundation for IVHM requirements. Development 

of IVHM ConOps is described in Section IV. Special emphasis is given to the activity of requirements-development 

for correct and a complete set of requirements in Section V, which lays the foundation of a well-built engineering 

system. Deriving ‘good’ requirements is the key in this process since a requirements-document is referenced 

throughout the development cycle and becomes the basis of verification and validation activities at all stages. 

Several relevant questions are posed that system engineers must address at various design and development stages to 

ensure that appropriate IVHM functions are built into the system design. Therefore, as discussed later, moving from 

‘exploratory stage’ to ‘concept of operation’ and developing ‘system requirements’, it is argued that if the relevant 

questions are identified and answered early on, the chances of a successful outcome are greatly enhanced. This paper 

sheds some light on the topic of which questions to ask and at what stage.  

II. The Systems Engineering Process as Applied to IVHM 

 

The intent of this section is not to reinvent the wheel as far as SE is concerned. Several references
13-15

  expound 

the general principles of SE. The intent here is to concentrate on the IVHM requirements writing process by reusing 

as many methods from SE as needed to make the integration of HM into a system’s design a seamless process. This 

paper assumes that IVHM functions are being developed as part of the aerospace system and hence the IVHM 

specific SE tasks are a part of overall SE for that system.  

A. Context – Where Does IVHM Fit in a System’s Development Program? 

There is often a debate whether IVHM should be regarded as a subsystem of a system or a function of a system 

(Figure 1) both from implementation architecture point of view and program management point of view
16

. A 



 

American Institute of Aeronautics and Astronautics 
 

 

3 

significant difference practically becomes evident in the program structure and how IVHM specific development 

and activities get managed. Due to its unique distributed nature it becomes a critical question to answer and if not 

crystallized early on could lead to poor implementation of IVHM.  

Unlike other subsystems, such as structure, propulsion, avionics, etc., which can be developed and tested 

separately given specifications in interface control documents (ICDs), IVHM development has to be integrated into 

each of the monitored subsystems. It is, therefore, a crosscutting function with a distributed implementation such 

that it monitors different subsystems and components by collecting data from spatially distributed sensors and, in 

some cases, processing information in a distributed manner as well
4
. Therefore, it does not quite fit the usual picture 

of a consolidated subsystem with a centralized teaming structure. Furthermore, it requires IVHM engineers to be 

fairly familiar with the subsystem design and function. However, from the SE perspective, treating IVHM as a 

subsystem allows allocating requirements and responsibilities to a dedicated health management team led by an 

IVHM lead engineer (Figure 1(a)). The IVHM team, in this case, must interface very closely with the individual 

subsystem teams. Additionally, the IVHM team must also interface and coordinate well with the organization’s 

safety assurance team that maintains an oversight of program wide safety, reliability, maintainability, and quality 

assurance policies and procedures. Specifically, there are potential overlaps in activities such as FMECAs, fault tree 

analyses, and other risk analyses that must be coordinated. Some of the programmatic risks can be alleviated through 

program management structure. For example, a large portion of success in Boeing 777’s IVHM implementation was 

attributed to the fact that the chief mechanic (top IVHM stakeholder) was elevated to the same approval level as the 

chief engineer
17

.  

 

 

Figure 1. (a) IVHM as a subsystem within system engineering. (b) IVHM as a capability residing within 

multiple subsystems of a system. 

 On the other hand, IVHM can be regarded as a set of functions or capabilities
18

 that other subsystems ought to 

possess to ensure safety, reliability, and maintainability (Figure 1(b)). This expands the scope of design and 

development of individual subsystems and requires dedicated HM engineers as part of respective subsystem 

development teams. Here each subsystem team must include an IVHM expert to guide IVHM design. There may not 

be a lead IVHM engineer for the overall system and each of the subsystem leads owns the IVHM requirements. 

There is a danger that this could result in unclear/incomplete system level IVHM requirements. A lack of dedicated 

leadership of overall IVHM may lead to overlaps and inconsistencies in IVHM terminology, design, 

implementation, and validation
3, 4, 11

. Therefore, care must be taken and a crisp program structure (with well defined 

reporting and work breakdown structure) should be put in place especially for IVHM development. The importance 

of getting an early buy-in from the program management and allocation of adequate test time cannot be emphasized 

enough. 
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Figure 2. Classification of requirements for SE. 

 

Irrespective of which view is taken, IVHM SE process is a subset of the overall SE process. Therefore, IVHM 

requirements are part of overall system requirements. Requirements are typically divided into functional 

requirements (FR) and non-functional requirements (NFR) categories (see Figure 2). Functional requirements define 

the function of a system whereas non-functional requirements define the attributes (such as safety, reliability, 

maintainability, usability, performance, security, etc.) of the system. As shown in Figure 3, the high level 

requirements for IVHM trace back to non-functional requirements of the overall system, such as maintainability, 

safety, and reliability requirements. IVHM requirements then can be further broken down into corresponding FRs 

(monitoring, diagnosis, prognosis, mitigation, etc.), and NFRs (metrics such as allowable false positives (FP), false 

negatives (FN), and desired accuracy, fault coverage, etc.). Therefore, the high level (HL) goals for the system that 

call for IVHM system development are considered as the starting points for IVHM concepts. An overview of the SE 

process is provided next with an emphasis on IVHM specific activities that must be carried out during a system’s 

development. 

 

 
Figure 3. Derivation of IVHM requirements from system requirements. 

B. The Systems Engineering Process 

Various government agencies and commercial organizations use slightly different but similar definitions for 

stages in the life cycle of a system. Although these stages differ in detail or terminology they all follow a similar 

sequential process with core systems engineering activities of definition, development, utilization, and retirement. 

For instance, the high level SIMILAR SE process
14

, as described by the INCOSE organization, is juxtaposed to the 

ISO’s generic lifecycle
15

 in Figure 4 to show that the two map on to each other well with slight change in scope of 

definitions for each of these stages. Processes from other organizations such as NASA, US Department of Defense, 

and US Department of Energy as well as non-governmental commercial entities map on these very well
13

. The key 
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points to note here are that the basic steps remain the same, there are often several feedback loops for iterative 

developments, and each organization may have customized processes to implement these.  

Expanding on the core Systems Engineering stages the classic V-diagram (see Figure 4) enumerates various 

tasks that need to be carried out during the development of a system. These tasks map directly onto the Concept, 

Development, and Production stages in the system lifecycle and form the basis for requirements development 

process.  

 

Figure 4: A generic approach to system engineering process (adapted from INCOSE14 and ISO15) and a mapping to V-

diagram depicting core systems engineering steps between the concept and production stages. 

In the remainder of this section, we briefly present each stage of the SE process shown in the V-diagram within 

Figure 2 while focusing on IVHM-specific aspects. It is understood that IVHM SE process and documents will be 

part of overall SE process and feed into system level activities during execution of the overall project management 

activities such as planning, allocation, reviews, approvals, and commissioning. 

Exploratory Stage: The Exploratory Stage is where programs and/or projects document the need to develop the 

intended IVHM system and explore possible options. This involves identifying the stakeholders and needs for 

IVHM; defining the scope of the IVHM system; identifying the various interfaces between components of the 

IVHM and with the vehicle for which the IVHM is being developed; and, understanding the available systems 

health data (both on-board and off-board data, as well as reference data), among others. Section III describes the key 

activities involved in the exploratory stage in greater detail. 
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Concept of Operation: In this stage, the concept of operations (ConOps) document for IVHM is developed. The 

ConOps document describes the characteristics of the IVHM system from the user’s point of view. This document 

describes the quantitative and qualitative system characteristics for all the stakeholders. This document can contain 

use cases to describe the interactions between the user and the IVHM system to achieve the goals. The ConOps 

development stage is described in detail in Section IV.  

Systems Requirements: Derived from the ConOps document, high-level system requirements include 

functional requirements (i.e., what the system must do) and also the non-functional requirements for performance 

(safety, availability, etc.), and cost (see Figure 3). High level system requirements then flow down to requirements 

for maintaining vehicle health adequate to perform the missions. They can flow from safety, cost, performance 

branches above and together influence HM design. From HM perspective these are still high level requirements and 

the exact design of HM is not yet there. Requirements at this level stay at the level of specifying reliability, 

maintainability, and availability without compromising safety in general. They sometimes include cost requirements 

pertaining to loss, incomplete missions, unscheduled maintenance, downtime, etc. It is important to note that in 

many cases the primary reason for an IVHM system is to provide a margin of design assurance for system shortfalls 

that cannot be cost effectively designed out. Next, it is also necessary to establish the means for testing and 

verification that the requirements are met. This often results in testability requirements
19

, which may flowdown to 

requirements for building simulation models, testbeds, built-in-test modules, and additional test assets to be used 

during verification step. Traditionally, IVHM requirements have not been finalized until system specification and 

design is complete
3
. However that takes away IVHM’s ability to influence system design for a more optimal 

solution. Therefore, it is argued that IVHM requirements must be developed in tandem with system requirements 

and should participate in the system requirements review. It is expected that the requirements at this stage will be at 

high level to support program objectives
7
. Since detailed IVHM requirements depend upon complete specification of 

the vehicle design, the requirements are updated iteratively until the final system design is locked down for critical 

design review. Further changes in IVHM requirements should be facilitated through a predefined change 

management process as new needs or constraints are identified
20

. Section V discusses more details about developing 

requirements for IVHM systems.  

High Level System Design: High level IVHM system design decomposes the IVHM system into its subsystems 

based on various functions that are required to carry out high level mission objectives. The decomposition is based 

on allocation of reliability, availability, and maintainability requirements to various subsystems such as propulsion, 

power, avionics, and structure. Further, it may be defined what level of HM would be appropriate to meet these 

requirements. Specifically, an IVHM system may be conceptualized at high level indicating what it will do – 

diagnosis, prognosis, real-time decision support, decision making for logistics, or all of the above, etc. While it still 

does not lay out exact details at software and hardware implementation level, the functional roles and interactions of 

the IVHM modules are well defined in the system design. This also includes the design of test platforms with fault 

injection capability both off-board and on-board the vehicle system, often termed as design for testability to increase 

the overall observability of the system
19

. 

Detailed System Design: The SE process is recursive in nature and can be applied to lower level subsystems all 

over again in order to come up with detailed design for the decomposed system in the previous step. It is at this level 

that IVHM design becomes a dedicated activity. Detailed design identifies which subsystems or components to 

focus on, data requirements, sensing requirements, processing requirements, interface requirements, etc. IVHM is a 

distributed system such that it monitors various different subsystems and components by collecting data from 

spatially distributed sensors and in some cases processing information in a distributed manner as well (unless 

implemented as a centralized system
16

). Therefore, it connects to the system through several interfaces at the 

subsystem and/or component levels. Often times IVHM takes advantage of synergies with other system 

instrumentation, but may influence the system design or add its own instrumentation if a need is determined. This 

requires detailed safety analyses such as failure mode and effects analysis or failure mode, effects, and criticality 

analysis, hazard and operability studies, reliability analysis, etc. to determine targets for health management and 

come up with suitable IVHM alternatives. Furthermore, the end use of IVHM output is expected to influence IVHM 

architecture and how it communicates with different stakeholders. IVHM design must comply with constraints 

arising from the overall system design and operational requirements. For instance specifications for sampling rates, 

model fidelity, computational complexity, sensor resolution, and power requirements, etc. should be all determined 

from the requirements flowed down from the higher levels. 

System Implementation: This step is the core of actual product realization activity. System implementation 

involves implementing both hardware and software. While various low level components/systems may be developed 

independently they must comply with interface requirements. Representative data or prototype mockups may be 
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made available to each other between any two interfacing elements as outlined in the detailed system design. An 

IVHM system will include implementing hardware and software for accounting for relevant sensors, signal 

conditioning, signal processing, and health management (diagnostic and prognostic) algorithms. Each basic building 

block identified in the detailed design phase mentioned above are realized by either procuring it, or building it, or 

reusing it. The requirements and specifications flowing from the top levels are kept in consideration while making 

choices from among several alternatives. Therefore, it is this phase where choices are made for models, algorithms, 

model fidelity, time constraints, etc and where they are implemented. These choices also guide the methods to test 

and verify these implementations at the individual level so that the top level integrated product will likely meet the 

“shall” statements that were allocated, derived, or generated for it. Thus low level requirements on performance are 

derived and implemented here.  

Unit/Component Level Test: Testing or verification is performed for each of the low level components or 

IVHM subsystem implementations. Verification consists of implementing a set of processes that assure the designer 

that the system is designed correctly, i.e. that it functions according to the requirements. Note that unit/component 

level verification is not the verification of the final IVHM system. However, using analysis, simulation, models or 

other means to test products at this level shows that they are implemented correctly, meet requirements, and are 

likely to integrate into a successful system.  This also allows identifying important areas and drafting verification 

procedures for them to be used during overall system verification. Low level performance tests developed during 

detailed system design step are carried out for corresponding components and/or subsystems. Simulated or 

experimental data may be obtained to build test scenarios. For instance, for a contingency management based IVHM 

system fault detection and failure prediction algorithms may be tested using experimental testbeds equipped with a 

fault injection capability using appropriate metrics
21-23

. Fault injection must be designed to represent actual faults 

encountered during operation that were also determined during detailed design phase through FMECA and other 

fault analyses. Separate algorithms, sensors, and data processing approaches may be used for different type of 

components that will be tested separately at this stage. Likewise, if there are hardware implementations such as 

sensor selection and placement, signal conditioning, data processing, etc they should be tested for desired 

specifications. While verification at the lowest level is not sufficient for the verification at the next level it is a 

necessary step before individual parts can be integrated. 

Subsystem Level Verification: Components and modules verified at the previous level are now integrated and 

tested to carry out verification at the subsystem level. This is an iterative step and is repeated whenever two or more 

subsystems are integrated together
24

. During this step major subsystems of a system are incrementally tested and 

verified. All major subsystems as identified in the high level design must be verified against requirements at that 

level. In the IVHM context algorithms may be integrated with respective hardware, data acquisition, and display 

interfaces. Verification at this level requires correct sequence of information flow as well in correct temporal order. 

It is tested whether health management algorithms implemented for different subsystems and components are 

performing their functions independently. For instance it is desired that a health management module for a specific 

component does not get affected by faults in other subsystem. Therefore, interference due to other subsystems is also 

determined and corrected for during the integration testing. Further, the process for fusing subsystem level health 

information to come up with overall system health is tested along with decision making routines. 

System Verification: During this step the IVHM is tested within the integrated system based on the verification 

plan that lists what requirements are to be tested at what level of integration. Verification methods, as noted earlier, 

are determined upfront to include development/procurement of supporting test platforms and tools that must be built 

to carry out testing. Tests are carried out by simulating a relevant environment at the system level to ensure proper 

functioning of the integrated system during off-nominal operation. Key steps involve inclusion of fault injection 

capability to test IVHM functionality without breaking the system itself. There are many scenarios where 

verification metrics based on offline tests do not suffice. In such cases verification through deployment, such as   

test-as-you-fly approach, may be needed. These methods have inherent risks of loss due to unforeseen outcomes 

from untested scenarios. To minimize losses, policies like that of controlled introduction into service may be used 

where more authority is granted to IVHM system in an incremental fashion as more trust is gained through 

controlled usage over some desired period of time
25

. 

System Validation and Deployment: The system is now deployed and tested in realistic environments under 

various scenarios as described in the ConOps. Validation is the process by which one proves that the system indeed 

performs to satisfy the needs of the customers, for example as codified in ConOps. Validating IVHM functions can 

be somewhat difficult. For example, if one of the requirements of an IVHM system is to increase the maintenance 

interval from 4 to 5 years, one has to find a way of validating this without having to wait five years. As another 

example, if an IVHM system is designed to monitor for a fault with a certain detection and false alarm rate, it will be 
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difficult to test this in the real world without seeding the system with actual faults. The validation, therefore, in this 

case relies heavily on simulations based testing. Other approaches such as in-service-validation for IVHM have been 

suggested that primarily take an incremental approach for trust building by allowing IVHM to participate in the 

control loop in a controlled manner
25

.  

Operations and Maintenance: An IVHM system is unique and different from other capabilities in the sense 

that its performance and correct functioning may not be determined for a long time. However, there should be 

assessment metrics in place that measure IVHM performance over time and in the context of IVHM it is often 

referred to as IVHM maturation phase
17

. IVHM parameters and thresholds may need to be fine tuned as operations 

begin and there is more information available about how the system is reacting to the operational environments. 

IVHM models may need to be updated as the system parameters change over time (due to normal wear, change in 

operational environments, etc.) or some modifications (such as due to maintenance and repair) are applied. The 

components used specifically for implementing IVHM capabilities are themselves subject to failure and, therefore, 

may require maintenance. Finally, as improved technologies become available there may be a desire to apply 

updates to the IVHM system as time goes by.  

III. Exploratory and Concept Stage 

The Exploratory and Concept of Operation involves identifying user needs, exploring various concepts that meet 

those needs, and selecting a concept solution that can be developed and tested.  To describe the situation of the past 

most of the time it is not clear to the subsystem designers how these IVHM system or resulting data will be used 

during operations and they often interpret the needs differently. This indicates that stakeholders are not always 

clearly identified, ConOps for IVHM are not crystallized, and consequently the requirements never flowdown 

adequately enough for a useful system to be developed.  

This section addresses this initial step that sets the stage for the success or failure of a useful IVHM system. It is 

for this stage that the HM community needs to instill  a culture of thinking about IVHM from the design phase. In 

order to determine what may be needed, the key issues to understand are: 

 What are the mission or program needs that IVHM can address or help in reducing programmatic and/or 

technical risks? 

 What are the relevant figures of merit for the intended mission or program and how can IVHM  contribute 

to meeting those metrics? 

 Will it be possible to realize a quantifiable ‘benefit’ within the mission/program’s duration despite 

additional costs of implementing IVHM, and how? 

To aid in answering these questions some key steps are defined next that must be carried out and used to 

document the findings into reports that will be used to get a buy in from the program management. 

 

1. Identify Stakeholders and Needs for the IVHM system 

The key to the development of good requirements is to identify the stakeholders early, and officially document 

their needs. This is one aspect in which IVHM-enabled systems differ from other systems on the aircraft, because 

just about everybody has a stake in the IVHM functions. As mentioned in the introduction, examples of IVHM 

stakeholders can be line maintenance, maintenance management, owner, operator, customer, original equipment 

manufacturer (OEM), regulatory authorities, which can be categorized from requirements perspective in the 

following manner: 

 Maintenance personnel and management (e.g. line, overhaul, MRO personnel) 

 Operator (e.g. pilot) 

 Fleet manager (e.g. mission commander) 

 Owner (e.g. airline / lease company / USAF) 

 Regulatory authorities (e.g. Airworthiness, certification) 

 General public 

 HM system integrator (e.g. Third party IVHM provider) 

 OEM (e.g. Internal integrated engineering teams developing the product) 

Each of these groups is looking for something different from the system. For example, the vehicle operator, who 

is often also the owner, is looking for fuel savings, increasing availability in the fleet, reducing turn times in the 

shops, and lowering maintenance cost, etc. The maintainer (both line and shop) is looking for parts availability, 

highest throughput, reducing no-fault-found incidences, reducing parts inventory, reducing maintenance cost, etc. If 
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the maintainer has a long-term service agreement with the customer his needs are very different from an IVHM 

system than if he only has a time & material contract with the operator or owner. The OEM and the ultimate 

customer also have stakes in the recommendations of the IVHM system. All these things have to be considered 

when developing the requirements, because they may lead to significantly different designs. While this document 

focuses on new systems, it is clear that retro-fit solutions have their own unique set of requirements of cost, weight, 

compatibility, and the need to get supplemental certification. The highest desires of the stakeholders are translated 

by the IVHM systems analyst into high level requirements. Once analyzed, these can be translated to low level (LL) 

requirements that are more specific and verifiable. 

Specifically the activities during this step should try to answer the following questions: 

 Who are the users of the system?  

 What functions of the system will be improved or feel an impact due to IVHM, and how?  

 Choice between autonomy versus human-in-the-loop and onboard versus off-board functions. 

- Will IVHM be used for automated or autonomous systems or will be of the man – machine variety 

such as engineering analysis, traditional hands on maintenance, planning and scheduling? 

 Are there potential conflicts arising from the needs of different stakeholders? 

 How are these needs prioritized to resolve such conflicts? 

2. Defining Scope of the IVHM Functions: 

Defining scope for IVHM functions is key to satisfying all relevant stakeholders and set expectations, narrow 

down and focus on prioritized fault modes, and bound the development effort. Complex systems consist of multiple 

subsystems comprising numerous components that can all develop fault modes that cannot be all feasibly or 

practically tackled by IVHM. It is therefore important to narrow down on those that are more critical from overall 

system’s point of view while writing scope statement. A Scope Statement should include the following information: 

a) Justification: Provide a justification of why IVHM is necessary in meeting system level objectives. 

 What is the intent of the system being considered?  

 What is its main purpose (priorities among safety, cost, or both)? 

b) Objectives: Define the IVHM functions – specifically the IVHM outputs and/or the IVHM action. These 

outputs can be a set of implemented actions based on prognostic estimates (autonomous functions), proposed 

alternatives, prognostic outlook, or just the current state estimate depending on the scope of IVHM’s role. 

 How will the IVHM output be used?  

 How will IVHM affect, and/or be affected by, other related system development activities? 

 Are there legacy systems with IVHM with success stories and/or lessons learned? 

c) Product scope description: Describe the features and functions of the products, services, and/or results the 

project will produce. 

 What is the Scope of the system being considered?  

 What are critical scenarios under which IVHM will be used to extend systems safety and availability?  

 Is it a real-time on-board decision support system capable of learning and adaptation or an enhancement to 

the supply chain for maintenance or logistics?  

 Will the IVHM system be mission, safety, or flight critical and how will that impact specific and general 

system requirements? 

- In addition to the reliability of the system and its components, is the criticality analysis also 

considered for any on-board development? 

- What is needed (diagnostics, prognostics, decision support, or decision making (correction, 

mitigation, or isolation), etc.)? 

 What are the budget constraints for the system within which IVHM should be developed? 

 Are IVHM requirements technically feasible within programs budget, schedule, and risk posture?  
d) Product acceptance criteria: Describe the process and criteria for accepting completed products, services, or 

results. Acceptance criteria can be defined in terms of product specifications validated by certain tests, 

demonstrations, and/or documented reports. For an IVHM-enabled system such criteria may be specified in 

terms of false positives, false negatives, timeliness, prediction horizon or similar type of metrics. These criteria 

must additionally specify the environments in which these tests would run, i.e. simulation, lab, flight, etc.  

Relevant tolerances in test results, number of tests for statistical significance, safe modes, etc. must be defined 

under acceptance criteria. 

e) Constraints: Restrictions that limit the scope of IVHM development or that limit the access to data and required 

resources. Some typical system development constraints include time and budget limits. In aerospace 
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applications, constraints also include limits on weight, volume, computational power, communication delay, 

communication protocols, data and physical access to system, etc. These system constraints have a direct 

influence on IVHM capabilities and scope. All such constraints must be identified and enumerated in the scope 

document. In general, constraints identification will try to answer the following question: 

 How does accessibility to the target subsystem/component influence the requirement development process?  

 What other systems and data access will have to be considered?  

 Will there be single or multiple users with read/write access and the necessity to establish publish/subscribe 

protocols?  

 Another consideration similar to access is availability. How often and for how long will access be required 

to the host subsystems? 

f) Assumptions: Assumptions need to be listed to communicate expectations and limitations to other stakeholders. 

Consider the situation when IVHM development is carried out as a parallel activity with inputs from system 

development and access to a fully functional system is not yet possible. In such cases IVHM development will 

be based on an understanding of how a system would operate nominally and under various faults that are 

candidates for HM. All assumptions should be listed that describe the model of the system as seen by IVHM, 

interactions, availability of data, noise levels, communications, operational conditions (for functions active 

during operation), hardware capabilities, assurance of software and hardware integrity, etc. The other source of 

assumptions is in estimating uncertainties in future operating conditions, changes in system and/or system 

ConOps, changes in intended use of IVHM output or operational procedures, etc. Assumptions that deal with 

such uncertainties should be identified and documented.  

3. Identify interfaces for IVHM system 

Interfaces identify various interactions that would take place in an IVHM equipped system. This would include 

interfaces between the system and the various elements of IVHM such as sensors, communications, control system, 

displays, etc. Typical interfaces are data interfaces between software modules, between data acquisition and state 

estimations algorithms, and further between state estimation and decision/planning modules. Interfaces identification 

relevant to IVHM systems should try to answer the following questions: 

 What Interfaces are encompassed by the scope of IVHM? 

 Does the system operate with on-board hardware, pass data to off-board systems, link to sustainment and 

finance databases, or other logistic and supply chain data collection systems? 

 Can IVHM access data from bus supporting core system functions? 

 Are system related sensing and operational environment data available to IVHM? 

 What are the compatibility considerations?  

 Is the system updateable and will contemplated future systems be accommodated?  

 What standards have to be met and what means and methods will be used to link to other data systems?  

 Which subsystems or components IVHM will monitor? 

 Will IVHM system be a part of a control loop? 

 Who will be the users of IVHM output and how will this output be made available to them (displays, alarms, 

databases, etc.)? 

When considering interfaces, one must strive to use the interface to improve access to data through a common 

universal format which is scalable and enables multi-disciplinary users to analyze data to discover invaluable 

information. 

 Interface Examples – On-board systems, off-board systems, maintenance systems, planning systems, data 

warehouse, logistics, finance systems, OEMs, acquisition, HR, research environments, and other services. 

 Interface Documentation – Documentation of interfaces should be done via interface control documents / 

specifications, architecture drawings, data flow diagrams, sequence diagrams, data mapping diagrams, and 

example data. 

4. Data Inventory 

Current inventory health management system developers must first understand the available systems health data and 

interfaces. Vehicle health management data come, in general, from on-board and off-board sources. Reference data 

are also essential. 

 On-board Data Sources - Operational data (e.g. flight phase, status, or other discrete signals), parametric 

data (e.g. air speed, angle of attack, timing, etc.), and fault data (e.g. fault and maintenance codes, BIT 

codes, etc.) 
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 Off-board Data Sources - Maintenance data (e.g. maintenance actions, pilot or crew reports, part installation 

and removal information, etc.), test stand data (e.g. test stand test limit reference data, test summary reports, 

etc.), and unstructured data (e.g. bore scope or other hand-held inspection system data). 

 Reference Data - System and subsystem organizational structure (e.g. Work Unit Code, ATA), engineering 

units (e.g. knots, psi, degrees F), on-board and off-board data recorder configurations, hardware and 

software versions, calibration / correction / conversion other metadata info and a data dictionary including 

domain-specific semantic information. 

IV. Concept of Operations and Use Cases for IVHM 

A Concept of Operations (ConOps) is a document that describes the characteristics of a system from the user’s 

point of view
26

. This document describes the quantitative and qualitative system characteristics to all the 

stakeholders. This document can contain use cases to describe the interactions between the user and the system to 

achieve the goals. The concept of “use cases” forms a strong basis for developing requirements.  

The ConOps begin as a thought exercise, where utility of novel ideas are explored though various scenarios in 

which a system would operate and benefit from the new concepts. The level of details in the scenario should be just 

enough to come up with need statements. The ConOps document can be iteratively revised as more insights are 

gained in the development phase. The ConOps are a means to communicate our understanding of the needs with all 

stakeholders. An overall system ConOps document is expected to include ConOps for IVHM module, which 

describes the functions of IVHM in situations with/without fault conditions in the system. The ConOps document 

should describe both normal and abnormal operations of the system 

Use Cases are also the results of thought experiments. However, they are somewhat more detailed than the 

ConOps document. They describe, in specific detail, how the system is going to be used by the users. The key to 

developing a useful use case is to identify the user (or the actor) and his or her actions on the system. They describe 

the nominal operating case as well as the abnormal (or alternate) operating cases.  

For example, the ConOps document might state that: “The system will be able to take off in normal and 

abnormal environmental conditions. It will also be able to take off if a single engine fails during takeoff.” The use 

cases associated with this ConOps might be far more detailed. It would describe exactly what normal conditions are. 

It will describe a set of abnormal conditions including temperature, altitude, rain and ice, and head and cross wind 

parameters. It might go into all the possible faults that can occur during take off that need to be designed for, etc. 

Since the general concepts are similar, we will use these terms interchangeably in the course of this paper. The key 

is to make sure that the set of requirements that result from these thought experiments are correct and complete.  

As we stated earlier, the overall ConOps document for systems equipped with IVHM, can be divided into two 

main parts.   

1. The first part of the system ConOps document describes a typical nominal system operational scenario. 

Since no health concerns are present for the system the IVHM is expected to continue monitoring the 

system and make sure no interference is caused in the nominal system functions. Therefore, this describes 

system operations when no health concerns are present. This would include IVHM output that would be 

considered indicative of healthy system and no false positives resulting in unnecessary concerns and/or 

actions. 

2. The second part of ConOps/Use Cases should describe the IVHM function when the system experiences a 

fault or abnormal condition. The IVHM output, corresponding set of actions, its interactions with the 

system, and expected consequences should be described at a generalized level. If the IVHM response is 

expected to be similar for all possible fault modes a single scenario description would suffice, otherwise, 

ConOps/Use Cases should include description for each category of contingencies. If it is expected that 

IVHM function evolves with system life cycle or is different in different modes of operation, all such 

scenarios should be described. Various different stages to be considered could be system development, 

integration, test and verification, operations, training, maintenance, upgrades, etc. However, the most 

important stage that needs description is operations
19

. Furthermore, ConOps/Use Cases should describe 

scenarios from all key stakeholders’ point of view to make use all IVHM users are satisfied with its 

functionality.  For IVHM such users are typically maintainers, managers, operators, and regulatory bodies, 

etc. 

ConOps relevant to IVHM will try to answer the following questions: 

 Who are IVHM stakeholders and what are their viewpoints? 

 How would these stakeholders use IVHM output in their actionable decisions? 
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 What are the operational modes (both nominal and off-nominal) of the system under which IVHM will 

operate? 

 What are the IVHM nominal (and off-nominal) operational modes and how they affect system safety? 

 How would IVHM function in presence of system fault?  

 How is IVHM expected to interact with the system (i.e. inflow & outflow of information)?  

 Will the IVHM system control hazards, and/or maintain safety, and/or protect assets? 

Ultimately, ConOps and Use Cases are used to derive system requirements. When considering intent and scope, 

the details of the Concepts of Operation are a significant element and affect much of the preparation for requirement 

development. Therefore the more details are added in ConOps/Use Cases, the more coverage of requirements can be 

achieved. All assumptions should be clearly stated. If during the development stage any assumption is found to be 

incorrect, then the ConOps/Use Cases may need to change; and, therefore, corresponding requirements may change 

as well.  

Another important aspect of requirement development is that is it essentially a collaborative process. 

Consequently many organizations and information sources must be prepared to participate in requirements 

generation and it is extremely important to establish the procedures for coordination upfront. Following categories 

must be considered. 

 Resource availability – The supporting resources for the program must be taken into account and vetted 

through the responsible organization and all support functions as well. Resources include in some cases, 

facilities, finances and equipment. Additional considerations that may come from support elements include 

computation and data resources. 

 Schedule – As health management is often a multi-disciplinary enterprise, it also tends to be multi-

organizational. As a result, independent scheduling and tasking need coordination and an upfront 

understanding of program resources. 

 Coordination – The primary element of coordination is frequent and unambiguous communications. But in 

addition, contributing elements are: a clear statement of work and schedules, well understood and mutually 

agreeable contract terms and conditions, well-understood roles and responsibilities, working sessions and 

technical interchanges, collaborative tools, information exchange processes, and a common technical and 

systems domain knowledge. 

V. Systems Requirements  

It is after the concept phase when a complete set of system requirements including those of an IVHM system 

should be derived from the ConOps already established. These requirements, if done well, allow an effective IVHM 

development management with assurance of meeting customer needs and expectation. In addition to product 

requirements some of the requirements are associated with management and administration of the system 

development, where budget and schedules are developed, the management team is created, and legal and reporting 

requirements are identified
17

. Such requirements are referred to as process or program requirements in this paper and 

discussed briefly later.  

 

A. Product Requirements 

Product requirements define what the IVHM system will do. Based on the ConOps document high level system 

requirements are usually functional requirements (i.e., what the system must do). These requirements also include 

performance requirements (safety, availability, etc.), and cost. High level system requirements then flow down to 

requirements for maintaining vehicle health adequate to perform the missions. They can flow from safety, cost, 

performance branches above and together influence HM. From HM perspective these are still high level since exact 

design of HM is not yet there. From an IVHM point of view, system requirements at this level stay at the level of 

specifying reliability, maintainability, and availability requirements without compromising safety in general and 

sometimes include cost requirements (pertaining to loss, incomplete missions, unscheduled maintenance, downtime, 

etc.). Industry experience reveals that lack of a systematic methodology to come up with IVHM requirements 

upfront has led to vague and incomplete requirements. This forces the lower level subsystems to make assumptions 

in interpreting those requirements and pose system level risks of cost, schedule, safety, and robustness.  

This step will try to answer the following questions relevant to IVHM:  

 Which components and fault/failure modes will be addressed by IVHM? 

 Are IVHM functions defined for each of the candidate subsystems/components? 
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 Are requirements between flight (airborne) and ground operations distinguished and specified for vehicle 

(launch and flight) and payload separately? 

 Are requirements for portable maintenance aids and maintenance management covered? 

 Are performance specifications for all IVHM functions specified with margins? 

 What are the tolerances around IVHM function outputs? Are these flowed down from top level mission 

objectives and properly specified at the lower level? 

 Are all interfaces, identified earlier, covered? 

- Are all hardware and software interfaces defined?  

- Are communication, command, and control interfaces defined? 

- Are test and operational interfaces such as GUIs, data reports, alarms, warnings, etc. defined? 

 Are IVHM function maintainability requirements included? 

- Calibration, updates, upgrades, etc. 

 What are the requirements for IVHM test capabilities to enable fault injection for verification and 

validation?  

 Are non-functional system requirements considered in the IVHM requirements? 

- Are requirements related to aspects like security considered?  

- Specifically, are topics like information sensitivity, data rights and proprietary information, and the 

requirements and procedures of classification included? 

 Are all requirements allocated? 

B. Process/Program Requirements 

In addition to developing product requirements that define ‘what is needed’ it is also critical to define the set of 

milestones, roles and responsibilities, mode of interaction between different subsystem teams, timeline, deliverables, 

reviews, and acceptance procedures.  IVHM is developed by multi-organizational teams including external 

contractors, and therefore, development of a cross-functional and inter-organizational  program management plan is 

extremely important to support the execution of an effective IVHM development
17

. Specifically, these requirements 

will determine the IVHM project management structure and answer the following questions: 

 Do all IVHM product requirements trace back to the mission concept and risk assumptions outlined in the 

ConOps? 

 Is there an IVHM design and development team in place? What is the structure of the team? 

 How does the lead IVHM engineer interface with the lead systems engineer and other subsystem leads? 

 Are IVHM requirements allocated properly to respective subsystems/components? 

 What is the timeline for IVHM requirements, design, and development and respective decision gates and 

reviews? 

 What are various formal documents that need to be maintained and produced? 

- For reference (e.g. ConOps document, requirements document, design document, etc.), 

- For analysis (e.g. FMECA, hazard analysis, risk analysis, fault tree analysis, etc.), 

- For evaluation (fault/failure scenario tests and test procedures, incompressible test list, verification 

and validation reports, acceptance criteria, etc.),  

- Approvals (verification and validation checklists, design change document, requirement waivers, 

etc.). 

 What is the process for making changes in IVHM requirements? 

- As system design takes shape exposing additional needs (such as when new failure modes are 

discovered or if new constraints arise due to implementation choices) how can the changes be made 

and tracked? 

- How are the changes due to scope, budget, and schedule adjustments accommodated? 

 Are the IVHM product requirements inclusive of requirements for system operation and maintenance and 

not just product development, i.e. how well are the end user (stakeholder) objectives addressed? 

While answers to these questions depend on the project management,  team structure, and specific mission 

types
27

, it is recommended that IVHM design reviews be conducted as part of overall system design reviews
4
. From 

costing perspectives, recent industry experience calls for a separate work breakdown structure and resource 

allocation for IVHM activities starting from the concept phase
11

. An important process in developing good 

requirements is that requirements are flowed down, and bi-directionally traced
8, 10

 – this ensures that all needs are 

considered and nothing is built without a need.  
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At the end of the requirements stage, the outputs should be clearly defined product requirements with an 

understanding of mutual goals, a program management structure, and well defined and documented processes and 

tools to help successful system development and deployment. This process is explained with an example in another 

paper that discusses development of an IVHM system for an aircraft Landing Gear System (LGS)
10

.  

VI. Conclusion 

This paper examined the various stages in the SE process and identified activities specific to IVHM design and 

development. Important aspects of the SE process for IVHM are highlighted by asking several relevant questions 

that system engineers must address at various design and development stages. Addressing these questions should 

provide some guidance to systems engineers towards writing IVHM related requirements to ensure that appropriate 

IVHM functions are built into the system design. A discussion on programmatic requirements and management 

structure emphasizes the uniqueness and importance of IVHM system within overall system development. As such 

this paper strives to contribute to the general discussion on developing IVHM requirements and systems engineering 

process for a truly integrated health management into a systems design.  
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